Representations for the largest Extension of a closure system

02/18/2020
by   Karima Ennaoui, et al.
0

We consider extension of a closure system on a finite set S as a closure system on the same set S containing the given one as a sublattice. A closure system can be represented in different ways, e.g. by an implicational base or by the set of its meet-irreducible elements. When a closure system is described by an implicational base, we provide a characterization of the implicational base for the largest extension. We also show that the largest extension can be handled by a small modification of the implicational base of the input closure system. This answers a question asked in [12]. Second, we are interested in computing the largest extension when the closure system is given by the set of all its meet-irreducible elements. We give an incremental polynomial time algorithm to compute the largest extension of a closure system, and left open if the number of meet-irreducible elements grows exponentially.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro