Relevance Proximity Graphs for Fast Relevance Retrieval

08/19/2019
by   Stanislav Morozov, et al.
0

In plenty of machine learning applications, the most relevant items for a particular query should be efficiently extracted, while the relevance function is based on a highly-nonlinear model, e.g., DNNs or GBDTs. Due to the high computational complexity of such models, exhaustive search is infeasible even for medium-scale problems. To address this issue, we introduce Relevance Proximity Graphs (RPG): an efficient non-exhaustive approach that provides a high-quality approximate solution for maximal relevance retrieval. Namely, we extend the recent similarity graphs framework to the setting, when there is no similarity measure defined on item pairs, which is a common practical use-case. By design, our approach directly maximizes off-the-shelf relevance functions and does not require any proxy auxiliary models. Via extensive experiments, we show that the developed method provides excellent retrieval accuracy while requiring only a few model computations, outperforming indirect models. We open-source our implementation as well as two large-scale datasets to support further research on relevance retrieval.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro