Regular Perturbation and Achievable Rates of Space-Division Multiplexed Optical Channels

Regular perturbation is applied to space-division multiplexing (SDM) on optical fibers and motivates a correlated rotation-and-additive noise (CRAN) model. For S spatial modes, or 2S complex-alphabet channels, the model has 4S(S+1) hidden independent real Gauss-Markov processes, of which 2S model phase noise, 2S(2S-1) model spatial mode rotation, and 4S model additive noise. Achievable information rates of multi-carrier communication are computed by using particle filters. For S=2 spatial modes with strong coupling and a 1000 km link, joint processing of the spatial modes gains 0.5 bits/s/Hz/channel in rate and 1.4 dB in power with respect to separate processing of 2S complex-alphabet channels without considering CRAN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro