Refined Belief-Propagation Decoding of Quantum Codes with Scalar Messages

02/14/2021
by   Kao-Yueh Kuo, et al.
0

Codes based on sparse matrices have good performance and can be efficiently decoded by belief-propagation (BP). Decoding binary stabilizer codes needs a quaternary BP for (additive) codes over GF(4), which has a higher check-node complexity compared to a binary BP for codes over GF(2). Moreover, BP decoding of stabilizer codes suffers a performance loss from the short cycles in the underlying Tanner graph. In this paper, we propose a refined BP algorithm for decoding quantum codes by passing scalar messages. For a given error syndrome, this algorithm decodes to the same output as the conventional quaternary BP but with a check-node complexity the same as binary BP. As every message is a scalar, the message normalization can be naturally applied to improve the performance. Another observation is that the message-update schedule affects the BP decoding performance against short cycles. We show that running BP with message normalization according to a serial schedule (or other schedules) may significantly improve the decoding performance and error-floor in computer simulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro