Recursive Optimization of Convex Risk Measures: Mean-Semideviation Models

04/02/2018
by   Dionysios S. Kalogerias, et al.
0

We develop and analyze stochastic subgradient methods for optimizing a new, versatile, application-friendly and tractable class of convex risk measures, termed here as mean-semideviations. Their construction relies on on the concept of a risk regularizer, a one-dimensional nonlinear map with certain properties, essentially generalizing the positive part weighting function in the mean-upper-semideviation risk measure. After we formally introduce mean-semideviations, we study their basic properties, and we present a fundamental constructive characterization result, demonstrating their generality. We then introduce and rigorously analyze the MESSAGEp algorithm, an efficient stochastic subgradient procedure for iteratively solving convex mean-semideviation risk-averse problems to optimality. The MESSAGEp algorithm may be derived as an application of the T-SCGD algorithm of (Yang et al., 2018). However, the generic theoretical framework of (Yang et al., 2018) is too narrow and structurally restrictive, as far as optimization of mean-semideviations is concerned, including the classical mean-upper-semideviation risk measure. By exploiting problem structure, we propose a substantially weaker theoretical framework, under which we establish pathwise convergence of the MESSAGEp algorithm, under the same strong sense as in (Yang et al., 2018). The new framework reveals a fundamental trade-off between the smoothness of the random position function and that of the particular mean-semideviation risk measure under consideration. Further, we explicitly show that the class of mean-semideviation problems supported under our framework is strictly larger than the respective class of problems supported in (Yang et al., 2018). Thus, applicability of compositional stochastic optimization is established for a strictly wider spectrum of mean-semideviation problems, justifying the purpose of our work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro