Rectifiable paths with polynomial log-signature are straight lines

05/30/2023
by   Peter K. Friz, et al.
0

The signature of a rectifiable path is a tensor series in the tensor algebra whose coefficients are definite iterated integrals of the path. The signature characterises the path up to a generalised form of reparametrisation. It is a classical result of K. T. Chen that the log-signature (the logarithm of the signature) is a Lie series. A Lie series is polynomial if it has finite degree. We show that the log-signature is polynomial if and only if the path is a straight line up to reparametrisation. Consequently, the log-signature of a rectifiable path either has degree one or infinite support. Though our result pertains to rectifiable paths, the proof uses results from rough path theory, in particular that the signature characterises a rough path up to reparametrisation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro