Randomized Orthogonal Projection Methods for Krylov Subspace Solvers

02/15/2023
by   Edouard Timsit, et al.
0

Randomized orthogonal projection methods (ROPMs) can be used to speed up the computation of Krylov subspace methods in various contexts. Through a theoretical and numerical investigation, we establish that these methods produce quasi-optimal approximations over the Krylov subspace. Our numerical experiments outline the convergence of ROPMs for all matrices in our test set, with occasional spikes, but overall with a convergence rate similar to that of standard OPMs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro