Random walk approximation for irreversible drift-diffusion process on manifold: ergodicity, unconditional stability and convergence

06/02/2021
by   Yuan Gao, et al.
0

Irreversible drift-diffusion processes are very common in biochemical reactions. They have a non-equilibrium stationary state (invariant measure) which does not satisfy detailed balance. For the corresponding Fokker-Planck equation on a closed manifold, via Voronoi tessellation, we propose two upwind finite volume schemes with or without the information of the invariant measure. Both two schemes enjoy stochastic Q-matrix structures and can be decomposed as a gradient flow part and a Hamiltonian flow part, which enable us to prove unconditional stability, ergodicity and error estimates. Based on two upwind schemes, several numerical examples - including sampling accelerated by a mixture flow, image transformations and simulations for stochastic model of chaotic system - are conducted. These two structure-preserving schemes also give a natural random walk approximation for a generic irreversible drift-diffusion process on a manifold. Thus they can be adapted to manifold-related computations induced from high dimensional molecular dynamics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro