Quantum speedup of branch-and-bound algorithms

06/25/2019
by   Ashley Montanaro, et al.
0

Branch-and-bound is a widely used technique for solving combinatorial optimisation problems where one has access to two procedures: a branching procedure that splits a set of potential solutions into subsets, and a cost procedure that determines a lower bound on the cost of any solution in a given subset. Here we describe a quantum algorithm that can accelerate classical branch-and-bound algorithms near-quadratically in a very general setting. We show that the quantum algorithm can find exact ground states for most instances of the Sherrington-Kirkpatrick model in time O(2^0.226n), which is substantially more efficient than Grover's algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro