Quantum Lazy Sampling and Game-Playing Proofs for Quantum Indifferentiability

04/25/2019
by   Jan Czajkowski, et al.
0

Game-playing proofs constitute a powerful framework for classical cryptographic security arguments, most notably applied in the context of indifferentiability. An essential ingredient in such proofs is lazy sampling of random primitives. We develop a quantum game-playing proof framework by generalizing two recently developed proof techniques. First, we describe how Zhandry's compressed quantum oracles [Zha18] can be used to do quantum lazy sampling from non-uniform function distributions. Second, we observe how Unruh's one-way-to-hiding lemma [Unr14] can also be applied to compressed oracles, providing a quantum counterpart to the fundamental lemma of game-playing. Subsequently, we use our game-playing framework to prove quantum indifferentiability of the sponge construction, assuming a random internal function or a random permutation. Our results upgrade post-quantum security of SHA-3 to the same level that is proven against classical adversaries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro