Quality-based Pulse Estimation from NIR Face Video with Application to Driver Monitoring

05/16/2019
by   Javier Hernandez-Ortega, et al.
1

In this paper we develop a robust for heart rate (HR) estimation method using face video for challenging scenarios with high variability sources such as head movement, illumination changes, vibration, blur, etc. Our method employs a quality measure Q to extract a remote Plethysmography (rPPG) signal as clean as possible from a specific face video segment. Our main motivation is developing robust technology for driver monitoring. Therefore, for our experiments we use a self-collected dataset consisting of Near Infrared (NIR) videos acquired with a camera mounted in the dashboard of a real moving car. We compare the performance of a classic rPPG algorithm, and the performance of the same method, but using Q for selecting which video segments present a lower amount of variability. Our results show that using the video segments with the highest quality in a realistic driving setup improves the HR estimation with a relative accuracy improvement larger than 20

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro