pyannote.audio: neural building blocks for speaker diarization

11/04/2019
by   Hervé Bredin, et al.
0

We introduce pyannote.audio, an open-source toolkit written in Python for speaker diarization. Based on PyTorch machine learning framework, it provides a set of trainable end-to-end neural building blocks that can be combined and jointly optimized to build speaker diarization pipelines. pyannote.audio also comes with pre-trained models covering a wide range of domains for voice activity detection, speaker change detection, overlapped speech detection, and speaker embedding – reaching state-of-the-art performance for most of them.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro