Providing In-network Support to Coflow Scheduling

07/06/2020
by   Cristian Hernandez Benet, et al.
0

Many emerging distributed applications, including big data analytics, generate a number of flows that concurrently transport data across data center networks. To improve their performance, it is required to account for the behavior of a collection of flows, i.e., coflows, rather than individual. State-of-the-art solutions allow for a near-optimal completion time by continuously reordering the unfinished coflows at the end-host, using network priorities. This paper shows that dynamically changing flow priorities at the end host, without taking into account in-flight packets, can cause high-degrees of packet re-ordering, thus imposing pressure on the congestion control and potentially harming network performance in the presence of switches with shallow buffers. We present pCoflow, a new solution that integrates end-host based coflow ordering with in-network scheduling based on packet history. Our evaluation shows that pCoflow improves in CCT upon state-of-the-art solutions by up to 34

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro