Provable Smoothness Guarantees for Black-Box Variational Inference

01/24/2019
by   Justin Domke, et al.
0

Black-box variational inference tries to approximate a complex target distribution though a gradient-based optimization of the parameters of a simpler distribution. Provable convergence guarantees require structural properties of the objective. This paper shows that for location-scale family approximations, if the target is M-Lipschitz smooth, then so is the objective, if the entropy is excluded. The key proof idea is to describe gradients in a certain inner-product space, thus permitting use of Bessel's inequality. This result gives insight into how to parameterize distributions, gives bounds the location of the optimal parameters, and is a key ingredient for convergence guarantees.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro