ProMIL: Probabilistic Multiple Instance Learning for Medical Imaging

06/18/2023
by   Łukasz Struski, et al.
0

Multiple Instance Learning (MIL) is a weakly-supervised problem in which one label is assigned to the whole bag of instances. An important class of MIL models is instance-based, where we first classify instances and then aggregate those predictions to obtain a bag label. The most common MIL model is when we consider a bag as positive if at least one of its instances has a positive label. However, this reasoning does not hold in many real-life scenarios, where the positive bag label is often a consequence of a certain percentage of positive instances. To address this issue, we introduce a dedicated instance-based method called ProMIL, based on deep neural networks and Bernstein polynomial estimation. An important advantage of ProMIL is that it can automatically detect the optimal percentage level for decision-making. We show that ProMIL outperforms standard instance-based MIL in real-world medical applications. We make the code available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro