Projected Subnetworks Scale Adaptation

01/27/2023
by   Siddhartha Datta, et al.
0

Large models support great zero-shot and few-shot capabilities. However, updating these models on new tasks can break performance on previous seen tasks and their zero/few-shot unseen tasks. Our work explores how to update zero/few-shot learners such that they can maintain performance on seen/unseen tasks of previous tasks as well as new tasks. By manipulating the parameter updates of a gradient-based meta learner as the projected task-specific subnetworks, we show improvements for large models to retain seen and zero/few shot task performance in online settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro