Progressive Spatio-Temporal Graph Convolutional Network for Skeleton-Based Human Action Recognition

11/11/2020
by   Negar Heidari, et al.
2

Graph convolutional networks (GCNs) have been very successful in skeleton-based human action recognition where the sequence of skeletons is modeled as a graph. However, most of the GCN-based methods in this area train a deep feed-forward network with a fixed topology that leads to high computational complexity and restricts their application in low computation scenarios. In this paper, we propose a method to automatically find a compact and problem-specific topology for spatio-temporal graph convolutional networks in a progressive manner. Experimental results on two widely used datasets for skeleton-based human action recognition indicate that the proposed method has competitive or even better classification performance compared to the state-of-the-art methods with much lower computational complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro