PROFIT: A Novel Training Method for sub-4-bit MobileNet Models

08/11/2020
by   Eunhyeok Park, et al.
0

4-bit and lower precision mobile models are required due to the ever-increasing demand for better energy efficiency in mobile devices. In this work, we report that the activation instability induced by weight quantization (AIWQ) is the key obstacle to sub-4-bit quantization of mobile networks. To alleviate the AIWQ problem, we propose a novel training method called PROgressive-Freezing Iterative Training (PROFIT), which attempts to freeze layers whose weights are affected by the instability problem stronger than the other layers. We also propose a differentiable and unified quantization method (DuQ) and a negative padding idea to support asymmetric activation functions such as h-swish. We evaluate the proposed methods by quantizing MobileNet-v1, v2, and v3 on ImageNet and report that 4-bit quantization offers comparable (within 1.48 ablation study of the 3-bit quantization of MobileNet-v3, our proposed method outperforms the state-of-the-art method by a large margin, 12.86 accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro