Predicting the performance of hybrid ventilation in buildings using a multivariate attention-based biLSTM Encoder-Decoder neural network

02/08/2023
by   Gaurav Chaudhary, et al.
0

Hybrid ventilation (coupling natural and mechanical ventilation) is an energy-efficient solution to provide fresh air for most climates, given that it has a reliable control system. To operate such systems optimally, a high-fidelity control-oriented model is required. It should enable near-real time forecast of the indoor air temperature and humidity based on operational conditions such as window opening and HVAC schedules. However, widely used physics-based simulation models (i.e., white-box models) are labour-intensive and computationally expensive. Alternatively, black-box models based on artificial neural networks can be trained to be good estimators for building dynamics. This paper investigates the capabilities of a multivariate multi-head attention-based long short-term memory (LSTM) encoder-decoder neural network to predict indoor air conditions of a building equipped with hybrid ventilation. The deep neural network used for this study aims to predict indoor air temperature dynamics when a window is opened and closed, respectively. Training and test data were generated from detailed multi-zone office building model (EnergyPlus). The deep neural network is able to accurately predict indoor air temperature of five zones whenever a window was opened and closed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro