Predicting Directionality in Causal Relations in Text

03/25/2021
by   Pedram Hosseini, et al.
0

In this work, we test the performance of two bidirectional transformer-based language models, BERT and SpanBERT, on predicting directionality in causal pairs in the textual content. Our preliminary results show that predicting direction for inter-sentence and implicit causal relations is more challenging. And, SpanBERT performs better than BERT on causal samples with longer span length. We also introduce CREST which is a framework for unifying a collection of scattered datasets of causal relations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro