Practical Scheduling for Real-World Serverless Computing

11/14/2021
by   Kostis Kaffes, et al.
0

Serverless computing has seen rapid growth due to the ease-of-use and cost-efficiency it provides. However, function scheduling, a critical component of serverless systems, has been overlooked. In this paper, we take a first-principles approach toward designing a scheduler that caters to the unique characteristics of serverless functions as seen in real-world deployments. We first create a taxonomy of scheduling policies along three dimensions. Next, we use simulation to explore the scheduling policy space for the function characteristics in a 14-day trace of Azure functions and conclude that frequently used features such as late binding and random load balancing are sub-optimal for common execution time distributions and load ranges. We use these insights to design Hermes, a scheduler for serverless functions with three key characteristics. First, to avoid head-of-line blocking due to high function execution time variability, Hermes uses a combination of early binding and processor sharing for scheduling at individual worker machines. Second, Hermes uses a hybrid load balancing approach that improves consolidation at low load while employing least-loaded balancing at high load to retain high performance. Third, Hermes is both load and locality-aware, reducing the number of cold starts compared to pure load-based policies. We implement Hermes for Apache OpenWhisk and demonstrate that, for the case of the function patterns observed both in the Azure and in other real-world traces, it achieves up to 85 policies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro