Powerful Partial Conjunction Hypothesis Testing via Conditioning

12/21/2022
by   Biyonka Liang, et al.
0

Research questions across a diverse array of fields are formulated as a Partial Conjunction Hypothesis (PCH) test, which combines information across m base hypotheses to determine whether some subset is non-null. However, standard methods for testing a PCH can be highly conservative. In this paper, we introduce the conditional PCH (cPCH) test, a new framework for testing a single PCH that directly corrects the conservativeness of standard approaches by conditioning on certain order statistics of the base p-values. Under distributional assumptions commonly encountered in PCH testing, the cPCH test produces a p-value that is nearly uniform. Through simulations, we demonstrate that the cPCH test uniformly outperforms standard single PCH tests and maintains Type I error control even under model misspecification, and can in certain situations also be used to outperform state-of-the-art PCH multiple testing procedures. Finally, we illustrate an application of the cPCH test on a replicability analysis of four microarray studies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro