Population-Contrastive-Divergence: Does Consistency help with RBM training?

10/06/2015
by   Oswin Krause, et al.
0

Estimating the log-likelihood gradient with respect to the parameters of a Restricted Boltzmann Machine (RBM) typically requires sampling using Markov Chain Monte Carlo (MCMC) techniques. To save computation time, the Markov chains are only run for a small number of steps, which leads to a biased estimate. This bias can cause RBM training algorithms such as Contrastive Divergence (CD) learning to deteriorate. We adopt the idea behind Population Monte Carlo (PMC) methods to devise a new RBM training algorithm termed Population-Contrastive-Divergence (pop-CD). Compared to CD, it leads to a consistent estimate and may have a significantly lower bias. Its computational overhead is negligible compared to CD. However, the variance of the gradient estimate increases. We experimentally show that pop-CD can significantly outperform CD. In many cases, we observed a smaller bias and achieved higher log-likelihood values. However, when the RBM distribution has many hidden neurons, the consistent estimate of pop-CD may still have a considerable bias and the variance of the gradient estimate requires a smaller learning rate. Thus, despite its superior theoretical properties, it is not advisable to use pop-CD in its current form on large problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro