PiNet: A Permutation Invariant Graph Neural Network for Graph Classification

05/08/2019
by   Peter Meltzer, et al.
20

We propose an end-to-end deep learning learning model for graph classification and representation learning that is invariant to permutation of the nodes of the input graphs. We address the challenge of learning a fixed size graph representation for graphs of varying dimensions through a differentiable node attention pooling mechanism. In addition to a theoretical proof of its invariance to permutation, we provide empirical evidence demonstrating the statistically significant gain in accuracy when faced with an isomorphic graph classification task given only a small number of training examples. We analyse the effect of four different matrices to facilitate the local message passing mechanism by which graph convolutions are performed vs. a matrix parametrised by a learned parameter pair able to transition smoothly between the former. Finally, we show that our model achieves competitive classification performance with existing techniques on a set of molecule datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro