PhD Thesis: Exploring the role of (self-)attention in cognitive and computer vision architecture

06/26/2023
by   Mohit Vaishnav, et al.
0

We investigate the role of attention and memory in complex reasoning tasks. We analyze Transformer-based self-attention as a model and extend it with memory. By studying a synthetic visual reasoning test, we refine the taxonomy of reasoning tasks. Incorporating self-attention with ResNet50, we enhance feature maps using feature-based and spatial attention, achieving efficient solving of challenging visual reasoning tasks. Our findings contribute to understanding the attentional needs of SVRT tasks. Additionally, we propose GAMR, a cognitive architecture combining attention and memory, inspired by active vision theory. GAMR outperforms other architectures in sample efficiency, robustness, and compositionality, and shows zero-shot generalization on new reasoning tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro