Phase Transitions of the Price-of-Anarchy Function in Multi-Commodity Routing Games

05/05/2023
by   Roberto Cominetti, et al.
0

We consider the behavior of the price of anarchy and equilibrium flows in nonatomic multi-commodity routing games as a function of the traffic demand. We analyze their smoothness with a special attention to specific values of the demand at which the support of the Wardrop equilibrium exhibits a phase transition with an abrupt change in the set of optimal routes. Typically, when such a phase transition occurs, the price of anarchy function has a breakpoint, is not differentiable. We prove that, if the demand varies proportionally across all commodities, then, at a breakpoint, the largest left or right derivatives of the price of anarchy and of the social cost at equilibrium, are associated with the smaller equilibrium support. This proves – under the assumption of proportional demand – a conjecture of o'Hare et al. (2016), who observed this behavior in simulations. We also provide counterexamples showing that this monotonicity of the one-sided derivatives may fail when the demand does not vary proportionally, even if it moves along a straight line not passing through the origin.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro