Perfect Matching in Random Graphs is as Hard as Tseitin

01/26/2022
by   Per Austrin, et al.
0

We study the complexity of proving that a sparse random regular graph on an odd number of vertices does not have a perfect matching, and related problems involving each vertex being matched some pre-specified number of times. We show that this requires proofs of degree Ω(n / log n) in the Polynomial Calculus (over fields of characteristic 2) and Sum-of-Squares proof systems, and exponential size in the bounded-depth Frege proof system. This resolves a question by Razborov asking whether the Lovász-Schrijver proof system requires n^δ rounds to refute these formulas for some δ > 0. The results are obtained by a worst-case to average-case reduction of these formulas relying on a topological embedding theorem which may be of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro