PCA-aided Fully Convolutional Networks for Semantic Segmentation of Multi-channel fMRI

10/06/2016
by   Lei Tai, et al.
0

Semantic segmentation of functional magnetic resonance imaging (fMRI) makes great sense for pathology diagnosis and decision system of medical robots. The multi-channel fMRI provides more information of the pathological features. But the increased amount of data causes complexity in feature detections. This paper proposes a principal component analysis (PCA)-aided fully convolutional network to particularly deal with multi-channel fMRI. We transfer the learned weights of contemporary classification networks to the segmentation task by fine-tuning. The results of the convolutional network are compared with various methods e.g. k-NN. A new labeling strategy is proposed to solve the semantic segmentation problem with unclear boundaries. Even with a small-sized training dataset, the test results demonstrate that our model outperforms other pathological feature detection methods. Besides, its forward inference only takes 90 milliseconds for a single set of fMRI data. To our knowledge, this is the first time to realize pixel-wise labeling of multi-channel magnetic resonance image using FCN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro