Path Planning for UAV-Mounted Mobile Edge Computing with Deep Reinforcement Learning

01/28/2020
by   Q. Liu, et al.
0

In this letter, we study an unmanned aerial vehicle (UAV)-mounted mobile edge computing network, where the UAV executes computational tasks offloaded from mobile terminal users (TUs) and the motion of each TU follows a Gauss-Markov random model. To ensure the quality-of-service (QoS) of each TU, the UAV with limited energy dynamically plans its trajectory according to the locations of mobile TUs. Towards this end, we formulate the problem as a Markov decision process, wherein the UAV trajectory and UAV-TU association are modeled as the parameters to be optimized. To maximize the system reward and meet the QoS constraint, we develop a QoS-based action selection policy in the proposed algorithm based on double deep Q-network. Simulations show that the proposed algorithm converges more quickly and achieves a higher sum throughput than conventional algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro