Patch-based Contour Prior Image Denoising for Salt and Pepper Noise

08/26/2018
by   Bo Fu, et al.
0

The salt and pepper noise brings a significant challenge to image denoising technology, i.e. how to removal the noise clearly and retain the details effectively? In this paper, we propose a patch-based contour prior denoising approach for salt and pepper noise. First, noisy image is cut into patches as basic representation unit, a discrete total variation model is designed to extract contour structures; Second, a weighted Euclidean distance is designed to search the most similar patches, then, corresponding contour stencils are extracted from these similar patches; At the last, we build filter from contour stencils in the framework of regression. Numerical results illustrate that the proposed method is competitive with the state-of-the-art methods in terms of the peak signal-to-noise (PSNR) and visual effects.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro