Part-Aligned Bilinear Representations for Person Re-identification

04/19/2018
by   Yumin Suh, et al.
2

We propose a novel network that learns a part-aligned representation for person re-identification. It handles the body part misalignment problem, that is, body parts are misaligned across human detections due to pose/viewpoint change and unreliable detection. Our model consists of a two-stream network (one stream for appearance map extraction and the other one for body part map extraction) and a bilinear-pooling layer that generates and spatially pools a part-aligned map. Each local feature of the part-aligned map is obtained by a bilinear mapping of the corresponding local appearance and body part descriptors. Our new representation leads to a robust image matching similarity, which is equivalent to an aggregation of the local similarities of the corresponding body parts combined with the weighted appearance similarity. This part-aligned representation reduces the part misalignment problem significantly. Our approach is also advantageous over other pose-guided representations (e.g., extracting representations over the bounding box of each body part) by learning part descriptors optimal for person re-identification. For training the network, our approach does not require any part annotation on the person re-identification dataset. Instead, we simply initialize the part sub-stream using a pre-trained sub-network of an existing pose estimation network, and train the whole network to minimize the re-identification loss. We validate the effectiveness of our approach by demonstrating its superiority over the state-of-the-art methods on the standard benchmark datasets, including Market-1501, CUHK03, CUHK01 and DukeMTMC, and standard video dataset MARS.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro