Packet-Loss-Tolerant Split Inference for Delay-Sensitive Deep Learning in Lossy Wireless Networks

04/28/2021
by   Sohei Itahara, et al.
0

The distributed inference framework is an emerging technology for real-time applications empowered by cutting-edge deep machine learning (ML) on resource-constrained Internet of things (IoT) devices. In distributed inference, computational tasks are offloaded from the IoT device to other devices or the edge server via lossy IoT networks. However, narrow-band and lossy IoT networks cause non-negligible packet losses and retransmissions, resulting in non-negligible communication latency. This study solves the problem of the incremental retransmission latency caused by packet loss in a lossy IoT network. We propose a split inference with no retransmissions (SI-NR) method that achieves high accuracy without any retransmissions, even when packet loss occurs. In SI-NR, the key idea is to train the ML model by emulating the packet loss by a dropout method, which randomly drops the output of hidden units in a DNN layer. This enables the SI-NR system to obtain robustness against packet losses. Our ML experimental evaluation reveals that SI-NR obtains accurate predictions without packet retransmission at a packet loss rate of 60

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro