PAC-Bayesian Learning of Optimization Algorithms

10/20/2022
by   Michael Sucker, et al.
0

We apply the PAC-Bayes theory to the setting of learning-to-optimize. To the best of our knowledge, we present the first framework to learn optimization algorithms with provable generalization guarantees (PAC-bounds) and explicit trade-off between a high probability of convergence and a high convergence speed. Even in the limit case, where convergence is guaranteed, our learned optimization algorithms provably outperform related algorithms based on a (deterministic) worst-case analysis. Our results rely on PAC-Bayes bounds for general, unbounded loss-functions based on exponential families. By generalizing existing ideas, we reformulate the learning procedure into a one-dimensional minimization problem and study the possibility to find a global minimum, which enables the algorithmic realization of the learning procedure. As a proof-of-concept, we learn hyperparameters of standard optimization algorithms to empirically underline our theory.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro