Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation

05/25/2022
by   Tu Vu, et al.
6

In this paper, we explore the challenging problem of performing a generative task (i.e., summarization) in a target language when labeled data is only available in English. We assume a strict setting with no access to parallel data or machine translation. Prior work has shown, and we confirm, that standard transfer learning techniques struggle in this setting, as a generative multilingual model fine-tuned purely on English catastrophically forgets how to generate non-English. Given the recent rise of parameter-efficient adaptation techniques (e.g., prompt tuning), we conduct the first investigation into how well these methods can overcome catastrophic forgetting to enable zero-shot cross-lingual generation. We find that parameter-efficient adaptation provides gains over standard fine-tuning when transferring between less-related languages, e.g., from English to Thai. However, a significant gap still remains between these methods and fully-supervised baselines. To improve cross-lingual transfer further, we explore three approaches: (1) mixing in unlabeled multilingual data, (2) pre-training prompts on target language data, and (3) explicitly factoring prompts into recombinable language and task components. Our methods can provide further quality gains, suggesting that robust zero-shot cross-lingual generation is within reach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro