Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers

09/04/2018
by   Apoorv Vyas, et al.
0

As deep learning methods form a critical part in commercially important applications such as autonomous driving and medical diagnostics, it is important to reliably detect out-of-distribution (OOD) inputs while employing these algorithms. In this work, we propose an OOD detection algorithm which comprises of an ensemble of classifiers. We train each classifier in a self-supervised manner by leaving out a random subset of training data as OOD data and the rest as in-distribution (ID) data. We propose a novel margin-based loss over the softmax output which seeks to maintain at least a margin m between the average entropy of the OOD and in-distribution samples. In conjunction with the standard cross-entropy loss, we minimize the novel loss to train an ensemble of classifiers. We also propose a novel method to combine the outputs of the ensemble of classifiers to obtain OOD detection score and class prediction. Overall, our method convincingly outperforms Hendrycks et al.[7] and the current state-of-the-art ODIN[13] on several OOD detection benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro