Optimizing Recursive Queries with Program Synthesis

02/21/2022
by   Yisu Remy Wang, et al.
0

Most work on query optimization has concentrated on loop-free queries. However, data science and machine learning workloads today typically involve recursive or iterative computation. In this work, we propose a novel framework for optimizing recursive queries using methods from program synthesis. In particular, we introduce a simple yet powerful optimization rule called the "FGH-rule" which aims to find a faster way to evaluate a recursive program. The solution is found by making use of powerful tools, such as a program synthesizer, an SMT-solver, and an equality saturation system. We demonstrate the strength of the optimization by showing that the FGH-rule can lead to speedups up to 4 orders of magnitude on three, already optimized Datalog systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro