Optimally Supporting IoT with Cell-Free Massive MIMO

11/30/2020
by   Hangsong Yan, et al.
0

We study internet of things (IoT) systems supported by cell-free (CF) massive MIMO (mMIMO) with optimal linear channel estimation. For the uplink, we consider optimal linear MIMO receiver and obtain an uplink SINR approximation involving only large-scale fading coefficients using random matrix (RM) theory. Using this approximation we design several max-min power control algorithms that incorporate power and rate weighting coefficients to achieve a target rate with high energy efficiency. For the downlink, we consider maximum ratio (MR) beamforming. Instead of solving a complex quasi-concave problem for downlink power control, we employ a neural network (NN) technique to obtain comparable power control with around 30 times reduction in computation time. For large networks we proposed a different NN based power control algorithm. This algorithm is sub-optimal, but its big advantage is that it is scalable.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro