Optimality of Huffman Code in the Class of 1-bit Delay Decodable Codes

09/19/2022
by   Kengo Hashimoto, et al.
0

For a given independent and identically distributed (i.i.d.) source, Huffman code achieves the optimal average codeword length in the class of instantaneous code with a single code table. However, it is known that there exist time-variant encoders, which achieve a shorter average codeword length than the Huffman code, using multiple code tables and allowing at most k-bit decoding delay for k = 2, 3, 4, . . .. On the other hand, it is not known whether there exists a 1-bit delay decodable code, which achieves a shorter average length than the Huffman code. This paper proves that for a given i.i.d. source, a Huffman code achieves the optimal average codeword length in the class of 1-bit delay decodable codes with a finite number of code tables.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro