Optimal entanglement distribution policies in homogeneous repeater chains with cutoffs

07/13/2022
by   Álvaro G. Iñesta, et al.
0

We study the limits of bipartite entanglement distribution using a chain of quantum repeaters that have quantum memories. To generate end-to-end entanglement, each node can attempt the generation of an entangled link with a neighbor, or perform an entanglement swapping measurement. A maximum storage time, known as cutoff, is enforced on the memories to ensure high-quality entanglement. Nodes follow a policy that determines when to perform each operation. Global-knowledge policies take into account all the information about the entanglement already produced. Here, we find global-knowledge policies that minimize the expected time to produce end-to-end entanglement. Our methods are based on Markov decision processes and value and policy iteration. We compare optimal policies to a policy in which nodes only use local information. We find that the advantage in expected delivery time provided by an optimal global-knowledge policy increases with increasing number of nodes and decreasing probability of successful swapping. Our work sheds light on how to distribute entangled pairs in large quantum networks using a chain of intermediate repeaters with cutoffs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro