Optimal Causal Rate-Constrained Sampling of the Wiener Process

09/03/2019
by   Nian Guo, et al.
0

We consider the following communication scenario. An encoder causally observes the Wiener process and decides when and what to transmit about it. A decoder makes real-time estimation of the process using causally received codewords. We determine the causal encoding and decoding policies that jointly minimize the mean-square estimation error, under the long-term communication rate constraint of R bits per second. We show that an optimal encoding policy can be implemented as a causal sampling policy followed by a causal compressing policy. We prove that the optimal encoding policy samples the Wiener process once the innovation passes either √(1/R) or -√(1/R), and compresses the sign of the innovation (SOI) using a 1-bit codeword. The SOI coding scheme achieves the operational distortion-rate function, which is equal to D^op(R)=1/6R. Surprisingly, this is significantly better than the distortion-rate tradeoff achieved in the limit of infinite delay by the best non-causal code. This is because the SOI coding scheme leverages the free timing information supplied by the zero-delay channel between the encoder and the decoder. The key to unlock that gain is the event-triggered nature of the SOI sampling policy. In contrast, the distortion-rate tradeoffs achieved with deterministic sampling policies are much worse: we prove that the causal informational distortion-rate function in that scenario is as high as D_DET(R) = 5/6R. It is achieved by the uniform sampling policy with the sampling interval 1/R. In either case, the optimal strategy is to sample the process as fast as possible and to transmit 1-bit codewords to the decoder without delay.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro