Open-Set RF Fingerprinting via Improved Prototype Learning

06/24/2023
by   Weidong Wang, et al.
0

Deep learning has been widely used in radio frequency (RF) fingerprinting. Despite its excellent performance, most existing methods only consider a closed-set assumption, which cannot effectively tackle signals emitted from those unknown devices that have never been seen during training. In this letter, we exploit prototype learning for open-set RF fingerprinting and propose two improvements, including consistency-based regularization and online label smoothing, which aim to learn a more robust feature space. Experimental results on a real-world RF dataset demonstrate that our proposed measures can significantly improve prototype learning to achieve promising open-set recognition performance for RF fingerprinting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro