Online Interval Scheduling with Predictions

02/27/2023
by   Joan Boyar, et al.
0

In online interval scheduling, the input is an online sequence of intervals, and the goal is to accept a maximum number of non-overlapping intervals. In the more general disjoint path allocation problem, the input is a sequence of requests, each involving a pair of vertices of a known graph, and the goal is to accept a maximum number of requests forming edge-disjoint paths between accepted pairs. These problems have been studied under extreme settings without information about the input or with error-free advice. We study an intermediate setting with a potentially erroneous prediction that specifies the set of intervals/requests forming the input sequence. For both problems, we provide tight upper and lower bounds on the competitive ratios of online algorithms as a function of the prediction error. For disjoint path allocation, our results rule out the possibility of obtaining a better competitive ratio than that of a simple algorithm that fully trusts predictions, whereas, for interval scheduling, we develop a superior algorithm. We also present asymptotically tight trade-offs between consistency (competitive ratio with error-free predictions) and robustness (competitive ratio with adversarial predictions) of interval scheduling algorithms. Finally, we provide experimental results on real-world scheduling workloads that confirm our theoretical analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro