Online Fair Revenue Maximizing Cake Division with Non-Contiguous Pieces in Adversarial Bandits

11/29/2021
by   Mohammad Ghodsi, et al.
0

The classic cake-cutting problem provides a model for addressing the fair and efficient allocation of a divisible, heterogeneous resource among agents with distinct preferences. Focusing on a standard formulation of cake cutting, in which each agent must receive a contiguous piece of the cake in an offline setting, this work instead focuses on online allocating non-contiguous pieces of cake among agents and establishes algorithmic results for fairness measures. In this regard, we made use of classic adversarial multi-armed bandits to achieve sub-linear Fairness and Revenue Regret at the same time. Adversarial bandits are powerful tools to model the adversarial reinforcement learning environments, that provide strong upper-bounds for regret of learning with just observing one action's reward in each step by applying smart trade-off between exploration and exploitation. This work studies the power of the famous EXP_3 algorithm that is based on exponential wight-importance updating probability distribution through time horizon.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro