One-Shot Traffic Assignment with Forward-Looking Penalization

06/23/2023
by   Giuliano Cornacchia, et al.
0

Traffic assignment (TA) is crucial in optimizing transportation systems and consists in efficiently assigning routes to a collection of trips. Existing TA algorithms often do not adequately consider real-time traffic conditions, resulting in inefficient route assignments. This paper introduces METIS, a cooperative, one-shot TA algorithm that combines alternative routing with edge penalization and informed route scoring. We conduct experiments in several cities to evaluate the performance of METIS against state-of-the-art one-shot methods. Compared to the best baseline, METIS significantly reduces CO2 emissions by 18 distribution considerably while still having low computational time. Our study proposes METIS as a promising solution for optimizing TA and urban transportation systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro