One-shot Learning with Absolute Generalization

05/28/2021
by   Hao Su, et al.
0

One-shot learning is proposed to make a pretrained classifier workable on a new dataset based on one labeled samples from each pattern. However, few of researchers consider whether the dataset itself supports one-shot learning. In this paper, we propose a set of definitions to explain what kind of datasets can support one-shot learning and propose the concept "absolute generalization". Based on these definitions, we proposed a method to build an absolutely generalizable classifier. The proposed method concatenates two samples as a new single sample, and converts a classification problem to an identity identification problem or a similarity metric problem. Experiments demonstrate that the proposed method is superior to baseline on one-shot learning datasets and artificial datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro