One-Shot Decision-Making with and without Surrogates

12/19/2019
by   Jakob Bossek, et al.
20

One-shot decision making is required in situations in which we can evaluate a fixed number of solution candidates but do not have any possibility for further, adaptive sampling. Such settings are frequently encountered in neural network design, hyper-parameter optimization, and many simulation-based real-world optimization tasks, in which evaluations are costly and time sparse. It seems intuitive that well-distributed samples should be more meaningful in one-shot decision making settings than uniform or grid-based samples, since they show a better coverage of the decision space. In practice, quasi-random designs such as Latin Hypercube Samples and low-discrepancy point sets form indeed the state of the art, as confirmed by a number of recent studies and competitions. In this work we take a closer look into the correlation between the distribution of the quasi-random designs and their performance in one-shot decision making tasks, with the goal to investigate whether the assumed correlation between uniform distribution and performance can be confirmed. We study three different decision tasks: classic one-shot optimization (only the best sample matters), one-shot optimization with surrogates (allowing to use surrogate models for selecting a design that need not necessarily be one of the evaluated samples), and one-shot regression (i.e., function approximation, with minimization of mean squared error as objective). Our results confirm an advantage of low-discrepancy designs for all three settings. The overall correlation, however, is rather weak. We complement our study by evolving problem-specific samples that show significantly better performance for the regression task than the standard approaches based on low-discrepancy sequences, giving strong indication that significant performance gains over state-of-the-art one-shot sampling techniques are possible.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro