On the Strength of Uniqueness Quantification in Primitive Positive Formulas

06/17/2019
by   Victor Lagerkvist, et al.
0

Uniqueness quantification (∃ !) is a quantifier in first-order logic where one requires that exactly one element exists satisfying a given property. In this paper we investigate the strength of uniqueness quantification when it is used in place of existential quantification in conjunctive formulas over a given set of relations Γ, so-called primitive positive definitions (pp-definitions). We fully classify the Boolean sets of relations where uniqueness quantification has the same strength as existential quantification in pp-definitions and give several results valid for arbitrary finite domains. We also consider applications of ∃ !-quantified pp-definitions in computer science, which can be used to study the computational complexity of problems where the number of solutions is important. Using our classification we give a new and simplified proof of the trichotomy theorem for the unique satisfiability problem, and prove a general result for the unique constraint satisfaction problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro