On the Optimization of Approximate Control Variates with Parametrically Defined Estimators

12/04/2020
by   Geoffrey F. Bomarito, et al.
0

Multi-model Monte Carlo methods, such as multi-level Monte Carlo (MLMC) and multifidelity Monte Carlo (MFMC), allow for efficient estimation of the expectation of a quantity of interest given a set of models of varying fidelities. Recently, it was shown that the MLMC and MFMC estimators are both instances of the approximate control variates (ACV) framework [Gorodetsky et al. 2020]. In that same work, it was also shown that hand-tailored ACV estimators could outperform MLMC and MFMC for a variety of model scenarios. Because there is no reason to believe that these hand-tailored estimators are the best among a myriad of possible ACV estimators, a more general approach to estimator construction is pursued in this work. First, a general form of the ACV estimator variance is formulated. Then, the formulation is utilized to generate parametrically-defined estimators. These parametrically-defined estimators allow for an optimization to be pursued over a larger domain of possible ACV estimators. The parametrically-defined estimators are tested on a large set of model scenarios, and it is found that the broader search domain enabled by parametrically-defined estimators leads to greater variance reduction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro