On the Minimum Distance, Minimum Weight Codewords, and the Dimension of Projective Reed-Muller Codes

09/18/2023
by   Sudhir R. Ghorpade, et al.
0

We give an alternative proof of the formula for the minimum distance of a projective Reed-Muller code of an arbitrary order. It leads to a complete characterization of the minimum weight codewords of a projective Reed-Muller code. This is then used to determine the number of minimum weight codewords of a projective Reed-Muller code. Various formulas for the dimension of a projective Reed-Muller code, and their equivalences are also discussed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro