On the m-eternal Domination Number of Cactus Graphs

07/18/2019
by   Václav Blažej, et al.
0

Given a graph G, guards are placed on vertices of G. Then vertices are subject to an infinite sequence of attacks so that each attack must be defended by a guard moving from a neighboring vertex. The m-eternal domination number is the minimum number of guards such that the graph can be defended indefinitely. In this paper we study the m-eternal domination number of cactus graphs, that is, connected graphs where each edge lies in at most two cycles, and we consider three variants of the m-eternal domination number: first variant allows multiple guards to occupy a single vertex, second variant does not allow it, and in the third variant additional "eviction" attacks must be defended. We provide a new upper bound for the m-eternal domination number of cactus graphs, and for a subclass of cactus graphs called Christmas cactus graphs, where each vertex lies in at most two cycles, we prove that these three numbers are equal. Moreover, we present a linear-time algorithm for computing them.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro